
CPS311 Lecture: Course Introduction; The Levels of Computer Structure;
Architecture and Organization

Last revised June 23, 2017
Objectives:

1. Introduce course, requirements
2. Briefly introduce binary representations for numbers - to be covered in detail

later
3. Overview levels of structure of a "real" computer
4. Introduce concepts of architecture and organization
5. Introduce the term "instruction set architecture"

 Materials:

1. Technology Samples

I. Preliminaries: Roll, Syllabus

II. The Concept of Levels of Computer Structure

A.Of course, a major concern of Computer science is understanding and
designing computer systems: systems of hardware and software which
work together to meet a particular need.

B. Many writers have observed that computer systems (hardware and software)
are the most complex engineering artifacts ever developed by man.

1. In proof of this, note that we are shocked when an engineered
system such as a bridge fails. But we are not surprised when a
computer system crashes.

a) Why?

b) We have learned how to build bridges that are reliable. But
computer systems are of such a level of complexity that we still
don't know how to master them.

�1

2. Discovering how to master this complexity is one of the most
important challenges of the discipline of computer science/
engineering.

3. One of the key concepts that helps in mastering complexity is the
use of HIERARCHIES OF ABSTRACTION.

a) You have met this concept already in programming. A complex
program is first designed in terms of a group of interacting
objects, each of which is then, in turn, developed in detail.

b) From a broader perspective, we know that computer users see a
computer system as sophisticated tool to perform a certain task,
such as word-processing. He/she usually does not care about
the details of how it carries out this task.

c) However, we realize that each software application is realized
by a program consisting of a series of individual statements
written in a language like C or C++ or Java.

d) At a lower level, each statement is translated by the compiler
into one or more machine instructions, each of which is then
executed by the underlying hardware.

e) The hardware is, in turn, realized as a set of fairly complex
chips, A typical chip consists of millions of interconnected
basic elements (called gates, flip flops, memory cells, etc) which
are fabricated from silicon, and which rely ultimately on laws
derived from solid state physics

C. In talking about complex computer systems, then it is desirable to
utilize a hierarchy of levels of abstraction. I will present here a listing
of five levels of abstraction (These are different from the ones in the
book, but the basic idea is the same.) At each level, the underlying
layers work together to present a particular "view" or interface, and the
layer responds to a particular language.

�2

1. The user level: the computer system performs certain tasks in
response to certain commands (e.g. the command to edit a file or
display a web page or compile a program). To the user, it appears
as if the system "understands" a command language such as the
shell command language of a Unix system, or html, or the mouse
clicks of a graphical interface.

2. The higher-level language programming level: each application is
programmed using the statements of a higher-level language such as
C or C++ or Java. A single user-level command is thus implemented
by 100's or 1000's of statements in a programming language. To the
programmer, it appears as if the system "understands" the particular
higher-level language he or she is programming in.

3. The machine language programming level: as delivered by the
manufacturer, a given computer system has certain primitive
components and capabilities:

a) A memory system, capable of storing and retrieving information
in fixed-size units known as “bytes” or “words”.

b) An input-output system, capable of transferring information
between memory and some number of devices such as
keyboards, screens, disks etc.

c) A CPU, capable of performing primitive operations such as
addition, subtraction, comparison, etc., and also capable of
controlling the other two systems.

(1)The CPU is designed to respond to a set of basic machine
language instructions, which is specific to a given type of
CPU. (E.g. the machine language for the MIPS architecture
we will study is vastly different from that of the Pentium
used in most desktop and laptop machines.)  
 

�3

The differences between different machine languages are
comparable in magnitude to the differences between human
languages such as English and Hebrew (which use different
alphabets) - though obviously machine languages are much
smaller!

(2)The compiler for a higher level language translates that into
the native machine language of the underlying machine.

(a)The same program must be translated into different
machine languages to run on different machines; thus,
each type of machine must have its own set of compilers.

(b)Regardless of the HLL used, the machine code generated
by the compiler for a given machine will be in the same
native machine language of that machine.

(c)Example: on our workstations, the .o and executable files
produced by the compiler and linker contain two
different forms of machine language binary code.  
 

At this level, it appears that the system "understands" its
machine language.

4. The hardware design level: Ultimately, computer systems are built
as interconnections of hardware devices known as gates, flip-flops,
etc., combined to form registers and busses. These, in turn, are
realized from primitive electronic building blocks known as
transistors, resistors, capacitors etc. The resultant system is capable
of directly executing the instructions comprising the machine
language of the system.

5. The solid-state physics level: current computers are fabricated from
materials such as silicon that have been chemically “doped” to alter their
electronic properties. Transistors, resistors, and capacitors are realized
by utilizing the properties of these semiconductor materials. (Of course,
future computers may use some other technology such as optics.)  

�4

 

Summary: 
 

�

D.We should note that these levels are not fixed and rigid - for example

1. Some user level software includes a facility that allows advanced
users to write programs - e.g. macros in spreadsheets, Unix shell
scripts, JavaScript, etc.

2. Some computers have been built whose machine language is
explicitly designed to support a particular HLL - e.g. the LISP
machine, or the PicoJava machine.

3. The partitioning of functions between hardware and machine language
code sometimes varies between different computers in the same family -
e.g. at one point some machines had hardware to perform floating point
arithmetic and others used machine language software for this.  
 

One text cites “The principle of equivalence of hardware and software”
which states that “Anything that can be done with software can also be
done with hardware, and anything that can be done with hardware can
also be done with software”. (However, doing something in hardware is
almost always much faster, but also more complex - which leads to a
tradeoff.)

E. Nonetheless, these levels are helpful tools for understanding computer
systems.

�5

F. Your previous coursework has focused on the first two levels. In this
course, we will look at the third and fourth levels, perhaps (time
permitting) with a glance at the lowest one.  

1. However, it is important to realize that this course is not at all
intended to enable you to actually design and build hardware
systems. That’s a separate field (called computer engineering), and
would call for a lot more than one course. Rather, this course is
intended to give you a better understanding of the hardware
platforms on which software systems operate.

2. The first section in the book talks about "building a
microprocessor". Actually, that's way beyond the scope of either
this course or the book. But what we will learn will help you to
understand the design of a microprocessor!

III.A Bit of History

A.There are few (if any) fields of study that undergo change as rapidly
as Computer Science and related disciplines.  
 

It is interesting, for example, to consider changes that have occurred
over the span of your lifetimes.

1. Many of these changes are quantitative in nature - e.g.

a) Computer systems of 25 years ago had clock speeds on the
order of tens of MHz. Current computer systems typically run
at 2-3 GHz - a several 100:1 change in 2-1/2 decades.

b) Personal computer systems of 25 years ago had main memory
system (RAM) capacities of hundreds of thousands of bytes up
to a few megabytes. Comparable systems today generally have
memory capacities on the order of 8-16 gigabytes - another
several 100:1 change in 2-1/2 decades.  
 

(In fact, when I revise lecture notes for each new offering of this
course, one thing I end up having to do is multiply many of the

�6

numbers by 2 or 4 - though for the last three times, I didn’t have
to change the CPU speed numbers at all, since this has plateaued
and the new frontier is multicore processors.)

2. Important software developments likewise occur with a rapid pace
- e.g. Google, Facebook, Twitter ... and the World-Wide Web is
just slightly older than you are.

B. In the midst of this rapid change, it is interesting to think about what
hasn’t changed. One such thing - which will be the focus of this
course - is the overall architecture of a computer system. (Though the
details have changed dramatically, the overall structure has not.)

C. Most computers are based on an architecture proposed by Jon Von
Neumann in a paper written 1946 entitled “Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument”.

1. There is a long line of development which led up to this proposal,
starting with Pascal’s calculator and progressing through Babbage’s
analytical engine and various machines built in the late 1930’s and
1940’s, and including the theoretical work done by Turing and others.

2. Von Neumann's paper clearly built on this previous work, but
contained two proposals that were especially important:

a) The use of the binary system for representing numbers internally
(as opposed to the arbitrary alphabets of abstract automata or
various decimal schemes used in earlier actual computers).

(1)That is, the alphabet of a Von Neumann machine consists of
the set { 0, 1 }. More complex information is represented
by strings of these symbols - e.g. the letter ‘A’ is represented
by 01000001 on most computers.

(2)We will cover binary representation of information in detail
later in the course, but for now we can note that with this

�7

representation it is possible to represent any non-negative
integer easily by using a place value system - e.g. the bit
string 101010 can represent the decimal number 42 by
interpreting it as  
 

 1 x 25 = 32  
+ 0 x 24 = 0  
+ 1 x 23 = 8  
+ 0 x 22 = 0  
+ 1 x 21 = 2  
+ 0 x 20 = 0  

--  
42

(3) Binary representation facilitates the construction of robust
computing machines, because there are many physical
systems that are BISTABLE (have two stable states) - e.g.

(a)Electrical switches or transistorized equivalents (on -
conducting, off - not conducting)

(b)Magnetic media (magnetized in one direction or the
other)

(c)Dynamic RAM - presence or absence of electrical charge

b) The stored program concept (in contrast to the hardwired
transition tables of abstract automata or the use of plugboards,
punched cards or tape, or the like in earlier actual computers).
This is the idea that a single linearly addressable memory might
be used to hold both the program that controls the computation
and the data the program manipulates.

(1)Von Neumann machines utilize random access memories - in
which any cell is equally accessible at any time. This
contrasts with the tape of the Turing machine or the stack of
the Push-Down-Automaton.

�8

(a)Each cell in the memory holds a finite, fixed number of
bits (called the word size of the machine), normally
interpreted as representing a binary integer (though other
interpretations are possible depending on the context.)

(b)Each cell in the memory has a distinct ADDRESS, which is
an integer in the range 0 .. (memory size) - 1. The range of
permissible addresses is called the ADDRESS SPACE.

(2)In addition to their random access memories, computers
based on the VonNeumann architecture have one or more
special memory cells called REGISTERS. The number of
registers is usually small - generally much less than 100.

(a)Instead of having addresses, registers have names,
specified as part of the machine's architecture.

(b)A register is typically implemented using a technology
that allows faster access to the data it contains than
regular memory allows. (On modern computers, perhaps
as much as 100 times or more faster.)

(c)One register (typically called the INSTRUCTION REGISTER
(IR)) holds the instruction currently being interpreted.

(d)Another register (typically called the PROGRAM
COUNTER (PC)) holds the address of the memory cell
(or beginning of a group of memory cells) holding the
NEXT instruction to be executed.

(e)Many instructions also use or alter one or more other registers.

(3)Von Neumann style computers fetch and interpret
instructions (which are bit strings) - usually from successive
locations in memory. One part of each instruction is an
operation code (op-code) which specifies which instruction
(from a fixed repertoire) the machine is to perform. An
instruction may also contain addresses of one or more

�9

locations in memory from which the operands are to be
fetched. All instructions make use of some of the registers.

3. Von Neumann's ideas were implemented soon thereafter in several
different forms.

a) Of these, the most historically important was one implemented
by a group (of which Von Neumann was a part) at the Institute
of Advanced Studies at Princeton in the late 1940's.

(1)Though it was not the first stored program computer to become
operational (the EDSAC designed by Wilkes and others at
Cambridge University holds this honor), it is commonly regarded
as the ancestor of the main line of computer development which
has continued to this day. Virtually all computers have a design
that is obviously descended from this machine.

(2)Because of its history, this machine is sometimes known as
“the Johniac” or “the IAS machine”

b) The basic design, as described in Burks, Goldstine, and Von
Neumann, “Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument” (reprinted in Bell and Newell
(1971) pp. 92-119): 
 
 
 
 
 
 
 
 
 
 
 
 

�10

CONTROL

MEMORY

ALUINPUT OUTPUT

Solid lines = flow of data
Dashed lines = flow of control

IR PC

 
 
 

(Most modern computers are very similar, though it is now
common to have a data path between IO devices and memory,
rather than requiring all IO to go through the ALU, and modern
computers typically contain two or more cores that share the
same memory and IO system).

c) Instructions on this machine consisted of a half word of memory
(20 bits) - organized as follows:  
 
 

�

d) The execution cycle of this machine could be described as follows:  
 

while not halted  
{  

fetch an instruction from the memory location  
 specified by PC into IR  
update PC to point to the next instruction  
decode instruction that is in the IR  
execute instruction that is in the IR  

}

D.The project itself was completed in 1951. The ensuing 60 years have
seen multitudinous developments of each aspect of this machine, yet
the family resemblance is still there, albeit faintly in some cases. (cf
Chihuahua's and Great Danes - both recognizable as distant cousins of
the wolf.) All general purpose computers in use today are, in fact,
descendants of the Von Neumann architecture.

1. What has changed most significantly is the technology used to
build the various component parts.

op-code
address

7 12 1

�11

2. SHOW SAMPLES

a) First generation: vacuum tubes (1950 .. 1958)

b) Second generation: individual transistors (1958 .. 1964)

c) Third generation: integrated circuits (1964 .. present, with
increasing levels of integration (SSI, MSI, LSI, VLSI)

d) Fourth generation: microprocessors - complete CPU's on a
single chip (1972 .. present)

e) Today, integration has gotten to the place where it is possible to:

(1)Put several complete processors on a single chip - yielding
the multicore computer.

(2)Put a complete computer system (CPU, memory, IO
interface) yielding one-chip computers.  

E. One area of continuing research interest in Computer Science is so-
called “non-Von Neumann” architectures - computer system
architectures that depart in some major way from this model. Thus far,
though, all general-purpose computers have been designed along the
lines of the basic VonNeumann architecture.

IV.Architecture and Organization

A.Throughout the course, we will be using two words that are often used
interchangeably, but which really have distinct technical meanings:
COMPUTER ARCHITECTURE and COMPUTER
ORGANIZATION.

1. Computer architecture is concerned with the FUNCTIONAL
CHARACTERISTICS of a computer system - as seen by the
assembly language programmer.

a) May writers prefer to use a somewhat more precise, specific term:
INSTRUCTION SET ARCHITECTURE (or ISA). The ISA is the
set of machine language instructions a given machine can interpret.

�12

(1)Example: Current Intel chips implement the 80x86 ISA
(sometimes known as IA32), which has stayed largely the
same from the 80386 of the late 1980's to the Pentiums of
today. (Modern versions also support 64 bit instructions, but
the basic 32 bit instructions are unchanged.)

(2)The CPU's used in Macintoshes until 2006 implements the
PowerPC ISA which dates to the early 1990's. (Apple now
uses chips that realize the IA32 ISA instead).  
 
[Interestingly, although the first generation of XBox game
consoles used an IA32 chip, and the Sony Playstation 2 used
a chip that implements the MIPS ISA, the XBox 360,
Playstation 3, and Wii all use chips based on the Power PC!]

b) One of the topics of the course will be looking at several ISA's.

(1)We will spend quite a bit of time on the ISA of the MIPS
CPU. The MIPS ISA is a real commercial ISA - currently
used in embedded systems such as TIVO and Cisco routers .
However, MIPS is still fairly simple to understand both at the
architecture and organization level, and is therefore often
used in courses like this, because among ISA’s that are
widely used in commercial systems, it is by far the easiest to
understand. It is also discussed extensively in our text.

(2)We will also look briefly at several other ISA’s.

2. Computer organization is concerned with how an architecture can be
REALIZED: the logical arrangement of various component parts to
produce an overall system to accomplish certain design goals.

a) The technology used to build the system components.

b) The component parts themselves

�13

c) Their interconnection

d) Strategies for improving performance.

3. Note that a given architecture may be realized by many different
organizations. For example, the IA32 architecture has been realized
(with some variations) by chips from the 80386 through numerous
Pentium variants. The Power PC ISA has gone through several
generations - most recently known as G3 and G4 (with G5 representing
a major change, though still backwards compatible). In either case, a
program that ran on the first implementation of the ISA (in the 1990’s)
could still run on a system based on the same ISA purchased today.

4. Computer architectures tend to be rather stable.

a) E.g. IBM's basic mainframe architecture (which is still being
manufactured) dates back to the mid 1960’s! The IA32
architecture has its roots in an architecture developed in the late
1970's, with a major revision in the mid 1980's and minor
revisions since then.

b) A major factor in the stability of architecture is the need to be able
to continue to use existing software. Potential changes to an
architecture have to be weighed carefully in terms of their impact
on existing software, and adoption of an altogether new
architecture comes at a hugh software development cost - which is
why you are still using architectures that are older than you are!

5. On the other hand, computer organization tends to evolve quickly with
changes in technology - each new model of a given system will
typically have different organizational features from its predecessors
(though some aspects will be common, too.) The driving factor here
is performance; and it is common for one or more new
implementations of a popular architecture to be developed each year.

�14

B. A fair question to ask at this point is “why should I need to learn about
computer architecture and organization, given that I'm not planning to
be a computer hardware designer, and that higher level language
compilers insulate the software I write from the details of the hardware
on which it is running?”

1. An understanding of computer architecture is important for a
number of reasons:

a) Although modern compilers hide the underlying hardware
architecture from the higher-level-language programmer, it is still
useful to have some sense of what is going on “under the hood”

(1)Cf the benefit of learning Greek for NT studies.

(2)There will be times when one has to look at what is
happening at the machine language level to find an obscure
error in a program.

b) Familiarity with the underlying architecture is necessary for
developing and maintaining some kinds of software:

(1)compilers

(2)operating systems and operating system components (such as
device drivers)

(3)embedded systems.

c) In order to understand various performance-improvement
techniques, one must have some understanding of the
functionality whose performance they are improving.

2. Likewise, an understanding of computer organization is important
for a number of reasons:

�15

a) Intelligent purchase decisions - seeing beyond the "hype" to
understand what the real impact of various features on
performance is.you to hardware-related issues (such as the
placement of items in memory) that can have a significant
impact on the performance of software.

b) Making effective use of high performance systems - sometimes
the way data and code is structured can prevent efficient use of
mechanisms designed to improve performance.

c) Increasingly, compilers that produce code for high performance
systems have to incorporate knowledge as to how the code is
actually going to be executed by the underlying hardware -
especially when the CPU uses techniques like pipelining and
out–of–order execution to maximize performance.

d) Understanding issues arising due to the use of parallel
processing (e.g multicore computers or clusters) involves some
understanding of how the various parts of a system work
together.

�16

