
CPS311 Lecture: Course Introduction; The Levels of Computer Structure; 
Architecture and Organization 

Last revised June 23,  2017
Objectives:

1. Introduce course, requirements
2. Briefly introduce binary representations for numbers - to be covered in detail 

later
3. Overview levels of structure of a "real" computer
4. Introduce concepts of architecture and organization
5. Introduce the term "instruction set architecture"

 Materials: 

1. Technology Samples

I. Preliminaries: Roll, Syllabus

II. The Concept of Levels of Computer Structure

A.Of course, a major concern of Computer science is understanding and 
designing computer systems: systems of hardware and software which 
work  together to meet a particular need.

B. Many writers have observed that computer systems (hardware and software) 
are the most complex engineering artifacts ever developed by man.

1.  In proof of this, note that we are shocked when an engineered 
system such as a bridge fails.  But we are not surprised when a 
computer system crashes.

a) Why?

b) We have learned how to build bridges that are reliable.  But 
computer systems are of such a level of complexity that we still  
don't know how to master them.
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2. Discovering how to master this complexity is one of the most 
important challenges of the discipline of computer science/
engineering.

3. One of the key concepts that helps in mastering complexity is the 
use of HIERARCHIES OF ABSTRACTION.

a) You have met this concept already in programming.  A complex 
program is first designed in terms of a group of interacting 
objects, each of which is then, in turn, developed in detail.

b) From a broader perspective, we know that computer users see a 
computer system as sophisticated tool to perform a certain task, 
such as word-processing.  He/she usually does not care about 
the   details of how it carries out this task.

c) However, we realize that each software application is realized 
by a program consisting of a series of individual statements 
written in a language like C or C++ or Java.

d) At a lower level, each statement is translated by the compiler 
into one or more machine instructions, each of which is then 
executed by the underlying hardware.

e) The hardware is, in turn, realized as a set of fairly complex 
chips,   A typical chip consists of millions of interconnected 
basic elements (called gates, flip flops, memory cells, etc) which 
are fabricated from silicon, and which rely ultimately on laws 
derived from solid state physics

C. In talking about complex computer systems, then it is desirable to  
utilize a hierarchy of levels of abstraction.  I will present here a listing 
of five levels of abstraction   (These are different from the ones in the 
book, but the basic idea is the same.)  At each level, the underlying 
layers work together to present a particular "view" or interface, and the 
layer responds to a particular language.
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1. The user level: the computer system performs certain tasks in  
response to certain commands (e.g. the command to edit a file or 
display a web page or compile a program).  To the user, it appears 
as if the system "understands" a command language such as the 
shell command language of a Unix system, or html, or the mouse 
clicks of a graphical interface.

2. The higher-level language programming level: each application is 
programmed using the statements of a higher-level language such as 
C or C++ or Java.  A single user-level command is thus implemented 
by 100's or 1000's of statements in a programming language.  To the 
programmer, it appears as if the system "understands" the particular 
higher-level language he or she is programming in.

3. The machine language programming level: as delivered by the  
manufacturer, a given computer system has certain primitive  
components and capabilities:

a) A memory system, capable of storing and retrieving information 
in fixed-size units known as “bytes” or “words”.

b) An input-output system, capable of transferring information 
between memory and some number of devices such as 
keyboards, screens, disks etc.

c) A CPU, capable of performing primitive operations such as 
addition, subtraction, comparison, etc., and also capable of 
controlling the other two systems.

(1)The CPU is designed to respond to a set of basic machine 
language instructions, which is specific to a given type of 
CPU.  (E.g. the machine language for the MIPS architecture 
we will study is vastly different from that of the Pentium 
used  in most desktop and laptop machines.)  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The differences between different machine languages are 
comparable in magnitude to the differences between human 
languages such as English and Hebrew (which use different 
alphabets) - though obviously  machine languages are much 
smaller!

(2)The compiler for a higher level language translates that into 
the native machine language of the underlying machine. 

(a)The same program must be translated into different 
machine languages to run on different machines; thus, 
each type of machine must have its own set of compilers.

(b)Regardless of the HLL used, the machine code generated 
by the compiler for a given machine will be in the same 
native machine language of that machine.

(c)Example: on our workstations, the .o and executable files 
produced by  the compiler and linker contain two 
different forms of machine language binary code.  
 

At this level, it appears that the system "understands" its 
machine language.

4. The hardware design level: Ultimately, computer systems are built 
as interconnections of hardware devices known as gates, flip-flops, 
etc.,  combined to form registers and busses.  These, in turn, are 
realized from primitive electronic building blocks known as 
transistors, resistors, capacitors etc.  The resultant system is capable 
of directly executing the instructions comprising the machine 
language  of the system.

5. The solid-state physics level: current computers are fabricated from 
materials such as silicon that have been chemically “doped” to alter their 
electronic properties.   Transistors, resistors, and capacitors are realized 
by utilizing the properties of these semiconductor materials.  (Of course, 
future computers may use some other technology such as optics.)  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Summary: 
 

�

D.We should note that these levels are not fixed and rigid - for example

1. Some user level software includes a facility that allows advanced 
users to write programs - e.g. macros in spreadsheets, Unix shell 
scripts, JavaScript, etc.

2. Some computers have been built whose machine language is 
explicitly designed to support a particular HLL - e.g. the LISP 
machine, or the PicoJava  machine.

3. The partitioning of functions between hardware and machine language 
code sometimes varies between different computers in the same family - 
e.g. at one point some machines had hardware to perform floating point 
arithmetic and others used machine language software for this.  
 

One text cites “The principle of equivalence of hardware and software” 
which states that “Anything that can be done with software  can also be 
done with hardware, and anything that can be done with hardware can 
also be done with software”.  (However, doing something in hardware is 
almost always much faster, but also more complex - which leads to a 
tradeoff.)

E. Nonetheless, these levels are helpful tools for understanding computer 
systems.
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F. Your previous coursework has focused on the first two levels.  In  this 
course, we will look at the third and fourth levels, perhaps (time 
permitting) with a glance at the lowest one.  

1. However, it is important to realize that this course is not at all 
intended to enable you to actually design and build hardware 
systems.  That’s a separate field (called computer engineering), and 
would call for a lot more than one course. Rather, this course is 
intended to give you a better understanding of the hardware 
platforms on which software systems operate.

2. The first section in the book talks about "building a 
microprocessor".  Actually, that's way beyond the scope of either 
this course or the book.  But what we will learn will help you to 
understand the design of a microprocessor!

III.A Bit of History

A.There are few (if any) fields of study that undergo change as rapidly  
as Computer Science and related disciplines.  
 

It is interesting, for example, to consider changes that have occurred 
over the span of your lifetimes.

1. Many of these changes are quantitative in nature - e.g.

a) Computer systems of 25 years ago had clock speeds on the 
order of tens of MHz.  Current computer systems typically run 
at 2-3 GHz - a several 100:1 change in 2-1/2 decades.

b) Personal computer systems of 25 years ago had main memory 
system  (RAM) capacities of hundreds of thousands of bytes up 
to a few megabytes.  Comparable  systems today generally have 
memory capacities on the order of 8-16 gigabytes - another 
several 100:1 change in 2-1/2 decades.  
 

(In fact, when I revise lecture notes for each new offering of this 
course, one thing I end up having to do is multiply many of the 
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numbers by 2 or 4 - though for the last three times, I didn’t have 
to change the CPU speed numbers at all, since this has plateaued 
and the new frontier is multicore processors.)

2. Important software developments likewise occur with a rapid pace 
- e.g. Google, Facebook, Twitter ...  and the World-Wide Web is 
just slightly older than you are.

B. In the midst of this rapid change, it is interesting to think about what 
hasn’t changed.  One such thing - which will be the focus of this 
course - is the overall architecture of a computer system.  (Though the 
details have changed dramatically, the overall structure has not.)

C. Most computers are based on an architecture proposed by Jon Von 
Neumann  in a paper written 1946 entitled “Preliminary Discussion of 
the Logical  Design of an Electronic Computing Instrument”.

1. There is a long line of development which led up to this proposal,   
starting with Pascal’s calculator and progressing through Babbage’s   
analytical engine and various machines built in the late 1930’s and 
1940’s, and including the theoretical work done by Turing and others.

2. Von Neumann's paper clearly built on this previous work, but 
contained two proposals that were especially important:

a) The use of the binary system for representing numbers internally  
(as opposed to the arbitrary alphabets of abstract automata or 
various decimal schemes used in earlier actual computers).

(1)That is, the alphabet of a Von Neumann machine consists of 
the   set { 0, 1 }.  More complex information is represented 
by strings  of these symbols - e.g. the letter ‘A’ is represented 
by 01000001 on most computers.

(2)We will cover binary representation of information in detail   
later in the course, but for now we can note that with this  
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representation it is possible to represent any non-negative  
integer easily by using a place value system - e.g. the bit 
string 101010 can represent the decimal number 42 by 
interpreting  it as  
 

  1 x 25 = 32  
+ 0 x 24 =   0  
+ 1 x 23 =   8  
+ 0 x 22 =   0  
+ 1 x 21 =   2  
+ 0 x 20 =   0  

--  
42

(3) Binary representation facilitates the construction of robust 
computing machines, because there are many physical 
systems that are BISTABLE (have two stable states) - e.g.

(a)Electrical switches or transistorized equivalents (on - 
conducting, off - not conducting)

(b)Magnetic media (magnetized in one direction or the 
other)

(c)Dynamic RAM - presence or absence of electrical charge

b) The stored program concept (in contrast to the hardwired 
transition  tables of abstract automata or the use of plugboards, 
punched cards  or tape, or the like in earlier actual computers).  
This is the  idea that a single linearly addressable memory might 
be used to hold both the program that controls the computation 
and the data the program manipulates.

(1)Von Neumann machines utilize random access memories - in 
which any cell is equally accessible at any time.  This 
contrasts with the tape of the Turing machine or the stack of 
the Push-Down-Automaton.
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(a)Each cell in the memory holds a finite, fixed number of 
bits (called the word size of the machine), normally 
interpreted as representing a binary integer (though other 
interpretations are possible depending on the context.)

(b)Each cell in the memory has a distinct ADDRESS, which is 
an  integer in the range 0 .. (memory size) - 1.  The range of 
permissible addresses is called the ADDRESS SPACE.

(2)In addition to their random access memories, computers  
based on the VonNeumann architecture have one or more 
special memory cells called REGISTERS.  The number of 
registers is usually small - generally much less than 100.

(a)Instead of having addresses, registers have names, 
specified as part of the machine's architecture.

(b)A register is typically implemented using a technology 
that allows faster access to the data it contains than 
regular memory allows.   (On modern computers, perhaps 
as much as 100 times or more faster.)

(c)One register (typically called the INSTRUCTION REGISTER 
(IR))  holds the instruction currently being interpreted.

(d)Another register (typically called the PROGRAM 
COUNTER (PC)) holds the address of the memory cell 
(or beginning of a group of memory cells) holding the 
NEXT instruction to be executed.

(e)Many instructions also use or alter one or more other registers.

(3)Von Neumann style computers fetch and interpret 
instructions (which are bit strings) - usually from successive 
locations in memory.  One part of each instruction is an 
operation code (op-code) which specifies which instruction 
(from a fixed repertoire) the machine is to perform.   An 
instruction may also contain addresses of one or more 
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locations in memory from which the operands are to be 
fetched.  All instructions make use of some of the registers.

3. Von Neumann's ideas were implemented soon thereafter in several 
different forms. 

a)  Of these, the most historically important was one  implemented 
by a group (of which Von Neumann was a part) at the  Institute 
of Advanced Studies at Princeton in the late 1940's.  

(1)Though  it was not the first stored program computer to become 
operational (the EDSAC designed by Wilkes and others at 
Cambridge University holds this honor), it is commonly regarded 
as the ancestor of the main line of  computer development which 
has continued to this day.  Virtually all   computers have a design 
that is obviously descended from this machine.

(2)Because of its history, this machine is sometimes known as 
“the Johniac” or “the IAS machine”

b) The basic design, as described in Burks, Goldstine, and Von 
Neumann, “Preliminary Discussion of the Logical Design of an 
Electronic Computing Instrument” (reprinted in Bell and Newell 
(1971) pp. 92-119): 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(Most modern computers are very similar, though it is now 
common to have a data path between IO devices and memory, 
rather than requiring all IO to go through the ALU, and modern 
computers typically contain two or more cores that share the 
same memory and IO system).

c) Instructions on this machine consisted of a half word of memory 
(20 bits) - organized as follows:  
 
 

�

d) The execution cycle of this machine could be described as follows:  
 

while not halted  
{  

fetch an instruction from the memory location  
  specified by PC into IR  
update PC to point to the next instruction  
decode instruction that is in the IR  
execute instruction that is in the IR  

}

D.The project itself was completed in 1951.  The ensuing 60 years have 
seen multitudinous developments of each aspect of this machine, yet 
the family resemblance is still there, albeit faintly in some cases.  (cf 
Chihuahua's and Great Danes - both recognizable as distant cousins of 
the wolf.)  All general purpose computers in use today are, in fact, 
descendants of the Von Neumann architecture. 

1. What has changed most significantly is the technology used to 
build  the various component parts.

op-code          
address

7                    12                                                  1
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2. SHOW SAMPLES

a) First generation: vacuum tubes (1950 .. 1958)

b) Second generation: individual transistors (1958 .. 1964)

c) Third generation: integrated circuits (1964 .. present, with 
increasing levels of integration (SSI, MSI, LSI, VLSI)

d) Fourth generation: microprocessors - complete CPU's on a 
single chip (1972 .. present)

e) Today, integration has gotten to the place where it is possible to:

(1)Put several complete processors on a single chip - yielding 
the multicore computer.

(2)Put a complete computer system (CPU, memory, IO 
interface) yielding one-chip computers.  

E. One area of continuing research interest in Computer Science is so-
called “non-Von Neumann” architectures - computer system 
architectures that depart in some major way from this model.  Thus far, 
though, all general-purpose  computers have been designed along the 
lines of the basic VonNeumann  architecture.

IV.Architecture and Organization

A.Throughout the course, we will be using two words that are often used 
interchangeably, but which really have distinct technical meanings:  
COMPUTER ARCHITECTURE and COMPUTER 
ORGANIZATION. 

1. Computer architecture is concerned with the FUNCTIONAL 
CHARACTERISTICS of a computer system - as seen by the 
assembly language programmer.

a) May writers prefer to use a somewhat more precise, specific term: 
INSTRUCTION SET ARCHITECTURE (or ISA).  The ISA is the 
set of machine language instructions a given machine can interpret.

�12



(1)Example: Current Intel chips implement the 80x86 ISA 
(sometimes known as IA32), which has stayed largely the 
same from the 80386 of the late 1980's to the Pentiums of 
today.  (Modern versions also support 64 bit instructions, but 
the basic 32 bit instructions are unchanged.)

(2)The CPU's used in Macintoshes until 2006 implements the 
PowerPC ISA which dates to the early 1990's.  (Apple now 
uses chips that realize the IA32 ISA instead).   
 
[ Interestingly, although the first generation of XBox game 
consoles used an IA32 chip, and the Sony Playstation 2 used 
a chip that implements the MIPS ISA, the XBox 360, 
Playstation 3, and Wii all use chips based on the Power PC!]

b) One of the topics of the course will be looking at several ISA's.

(1)We will spend quite a bit of time on the ISA of the MIPS 
CPU.  The MIPS ISA is a real commercial ISA - currently 
used in embedded systems such as TIVO and Cisco routers .  
However, MIPS is still fairly simple to understand both at the 
architecture and organization level, and is therefore often 
used in courses like this, because among ISA’s that are 
widely used in commercial systems, it is by far the easiest to 
understand.  It is also discussed extensively in our text.

(2)We will also look briefly at several other ISA’s.

2. Computer organization is concerned with how an architecture can be 
REALIZED: the logical arrangement of various component parts to  
produce an overall system to accomplish certain design goals.

a) The technology used to build the system components. 

b)  The component parts themselves
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c) Their interconnection

d) Strategies for improving performance.

3. Note that a given architecture may be realized by many different  
organizations.  For example, the IA32 architecture has been realized 
(with some variations) by chips from the 80386 through numerous 
Pentium variants.  The Power PC ISA has gone through several 
generations - most recently known as G3 and G4 (with G5 representing 
a major change, though still backwards compatible).  In either case, a 
program that ran on the first implementation of the ISA (in the 1990’s) 
could still run on a system based on the same ISA purchased today.

4. Computer architectures tend to be rather stable.

a) E.g. IBM's basic mainframe architecture (which is still being 
manufactured) dates back to the mid 1960’s!  The IA32 
architecture has its roots  in an architecture developed in the late 
1970's, with a major revision in the mid 1980's and minor 
revisions since then.  

b) A major factor in the stability of architecture is the need to be able 
to continue to use existing software.   Potential changes to an 
architecture have to be weighed carefully in terms of their impact 
on existing software, and adoption of an altogether new 
architecture comes at a hugh software development cost - which is 
why you are still using architectures that are older than you are!

5. On the other hand, computer organization tends to evolve quickly with   
changes in technology - each new model of a given system will 
typically have different organizational features from its predecessors  
(though some aspects will be common, too.)  The driving factor here  
is performance; and it is common for one or more new 
implementations of a popular architecture to be developed each year.
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B. A fair question to ask at this point is “why should I need to learn about 
computer architecture and organization, given that I'm not planning to 
be a computer hardware designer, and that higher level language 
compilers insulate the software I write from the details of the hardware 
on which it is running?”

1. An understanding of computer architecture is important for a 
number of reasons:

a) Although modern compilers hide the underlying hardware 
architecture from the higher-level-language programmer, it is still 
useful to have some sense of what is going on “under the hood” 

(1)Cf the benefit of learning Greek for NT studies.

(2)There will be times when one has to look at what is 
happening at  the machine language level to find an obscure 
error in a program.

b) Familiarity with the underlying architecture is necessary for 
developing and maintaining some kinds of software:

(1)compilers

(2)operating systems and operating system components (such as 
device drivers)

(3)embedded systems.

c) In order to understand various performance-improvement 
techniques, one must have some understanding of the 
functionality whose performance they are improving.

2. Likewise, an understanding of computer organization is important 
for  a number of reasons:
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a) Intelligent purchase decisions - seeing beyond the "hype" to 
understand what the real impact of various features on 
performance  is.you to hardware-related issues (such as the 
placement of items in memory) that can have a significant 
impact on the performance of software.

b) Making effective use of high performance systems - sometimes 
the way data and code is structured can prevent efficient use of 
mechanisms designed to improve performance.

c) Increasingly, compilers that produce code for high performance 
systems have to incorporate knowledge as to how the code is 
actually going to be executed by the underlying hardware - 
especially when the CPU uses techniques like pipelining and 
out–of–order execution to maximize performance.

d) Understanding issues arising due to the use of parallel 
processing (e.g multicore computers or clusters) involves some 
understanding of how the various parts of a system work 
together.
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